Finite quantum field theory in noncommutative geometry
نویسندگان
چکیده
منابع مشابه
Quantum Field Theory On A Discrete Space And Noncommutative Geometry
We analyse in detail the quantization of a simple noncommutative model of spontaneous symmetry breaking in zero dimensions taking into account the noncommutative setting seriously. The connection to the counting argument of Feynman diagrams of the corresponding theory in four dimensions is worked out explicitly. Special emphasis is put on the motivation as well as the presentation of some well-...
متن کاملTowards Finite Quantum Field Theory in Non-commutative Geometry
We describe the self-interacting scalar field on the truncated sphere and we perform the quantization using the functional (path) integral approach. The theory posseses a full symmetry with respect to the isometries of the sphere. We explicitely show that the model is finite and the UV-regularization automatically takes place.
متن کاملNoncommutative quantum mechanics from noncommutative quantum field theory.
We derive noncommutative multiparticle quantum mechanics from noncommutative quantum field theory in the nonrelativistic limit. Particles of opposite charges are found to have opposite noncommutativity. As a result, there is no noncommutative correction to the hydrogen atom spectrum at the tree level. We also comment on the obstacles to take noncommutative phenomenology seriously and propose a ...
متن کاملFinite Field Theory on Noncommutative Geometries
The propagator is calculated on a noncommutative version of the flat plane and the Lobachevsky plane with and without an extra (euclidean) time parameter. In agreement with the general idea of noncommutative geometry it is found that the limit when the two ‘points’ coincide is finite and diverges only when the geometry becomes commutative. The flat 4-dimensional case is also considered. This is...
متن کاملRemarks on twisted noncommutative quantum field theory
We review recent results on twisted noncommutative quantum field theory by embedding it into a general framework for the quantization of systems with a twisted symmetry. We discuss commutation relations in this setting and show that the twisted structure is so rigid that it is hard to derive any predictions, unless one gives up general principles of quantum theory. It is also shown that the twi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Theoretical Physics
سال: 1996
ISSN: 0020-7748,1572-9575
DOI: 10.1007/bf02083810